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Abstract: One of the most significant challenges that global decision-makers are concerned about
is soil contamination. It is also related to food security and soil fertility. The quality of the soil and
crops in Egypt are being severely impacted by the increased heavy metal content of the soils in the
middle Nile Delta. In Egypt’s middle Nile Delta, fifty random soil samples were chosen. Inverse
distance weighting (IDW) was used to create the spatial pattern maps for four heavy metals: Cd,
Mn, Pb, and Zn. The soil contamination levels in the research area were assessed using principal
component analysis (PCA), contamination factors (CF), the geoaccumulation index (I-Geo), and
the improved Nemerow pollution index (In). The findings demonstrated that using PCA, the soil
heavy metal concentrations were divided into two clusters. Moreover, the majority of the study
region (44.47%) was assessed to be heavily to extremely polluted by heavy metals. In conclusion,
integrating the contamination indices CF, I-Geo, and In with the GIS technique and multivariate
model, analysis establishes a practical and helpful strategy for assessing the hazard of heavy metal
contamination. The findings could serve as a basis for decision-makers to create effective heavy metal
mitigation efforts.

Keywords: arid lands; contamination indices; Nile Delta; statistical analysis; geostatistical analysis

1. Introduction

Huge pressure has been placed on limited soil resources as a result of the improper
management of land resources brought on by continuously growing human needs, par-
ticularly in third-world countries [1,2]. Soil is the most important natural resource for the
survival and maintenance of ecological ecosystems [3]. However, the increased use of
fertilizers and pesticides, rapid urbanization, and industrialization cause soil contamina-
tion [4,5]. Due to the detrimental effects of contaminants on crop quality, food security
and human health have been more and more at risk in recent decades [6]. Additionally,
arid and semi-arid regions need to pay more attention to the impacts of climate change
and potential food security adaptations [7]. Negative effects on crop quality arise as soil
heavy metal concentrations rise over acceptable limits, which are then reflected in the food
chain [8]. Globally, there are 5 million sites with soil contamination from heavy metals
or metalloids that are currently more concentrated than permissible [9]. Heavy metals
can cause serious pollution in the environment and have negative impacts on ecosystems,
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including bioaccumulation since they cannot be biologically or chemically degraded once
they are introduced into the soil and can persist in the environment for a long time [10,11].
Rising levels of soil contamination in Egyptian soils during the past 20 years have de-
creased soil quality and fertility [12]. In the Nile Delta, irrigation activities require the use of
wastewater. The main agricultural and industrial drainage wastewater drain in El Gharbia,
Egypt, was blended with Nile water for irrigation in the middle Nile Delta [13]. Due to a
lack of fresh water for irrigation, farmers were forced to use drain and sewage water, which
resulted in the accumulation of heavy metals in the rhizosphere zone [14]. Increased salt
deposition and heavy metal concentrations in the rhizosphere zone may be harmful and
can affect human health [15,16]. Numerous harmful compounds are deposited into the soil
mostly as a result of uncontrolled activity, which eventually causes soil degradation and
harm to human health. Agricultural practices, particularly land use, inorganic and petro-
chemical fertilizers for organic matter (bio-solids, animal manure, and organic fertilizers),
and pesticides are the main human factors contributing to the deposition of soil-bearing
solids [17]. Human activities have also had a significant impact on soil quality [18]. In
order to lower the contamination risks in Egyptian soils, regular environmental monitoring
and lowering the fertilization rates are necessary [19]. The first steps in effectively treating
soil contamination are in understanding the spatial distribution of heavy metals and being
aware of the sources of contamination. [2]. Consequently, geographic information systems
(GIS) aid in mapping the spatial distribution of soil parameters [20–22]. A method called
geostatistical analysis allows for the study of spatial data and the location of the unsampled
data to be predicted [15]. Several geostatistical analysis techniques exist, including Kriging
and inverse distance weighting (IDW). To assess soil ecological risk, various methods are
utilized, including the index technique, quotient method, fuzzy comprehensive assessment,
geoaccumulation index, potential ecological risk index, and pollution load index [23,24].
Several soil-pollution causes, such as industrial and agricultural activity, as well as the
proportion of heavy metals responsible for soil contamination, have been identified using
principal component analysis (PCA) [25,26]. PCA also benefits from being able to manage
enormous amounts of data without being limited to a specific quantity [27,28]. Agglomera-
tive hierarchical clustering (AHC) also looks at the separations between samples where
the majority of comparable points are gathered into one cluster. AHC is an unsupervised
classification technique that involves repeatedly combining the two nearest clusters. The
most important aspect of AHC is how to automatically terminate the procedure at the time
when the clustering error rate reaches its lowest feasible value because of its recursive
nature [29]. The geostatistical and multivariate analysis combined can be useful methods
for evaluating environmental pollution [30]. The current study aims to analyze soil con-
tamination with several chosen heavy metals by mapping their spatial distribution in the
middle Nile Delta, Egypt, defining contamination levels using PCA, and determining the
degree of contamination of the study region. The objectives are to investigate various soil
characteristics and total Cd, Mn, Pb, and Zn concentrations in some areas of the middle
Nile Delta, Egypt. The statistical analysis utilized in the current study is a useful tool
for identifying potential sources of contaminants because it allows for the assessment of
cause-and-effect linkages and highlights exceeded levels.

2. Methodology
2.1. Experimental Area

The study area is situated in the middle of the Nile Delta in Egypt. (Kafr EL—Zayat
area). The study area is a portion of the Gharbia Governorate in Egypt. It has a total area of
19,715.85 hectares (ha) and is bordered by the longitudes 30◦48′00′′ and 30◦52′59′′ and the
latitudes 30◦55′11′′ and 30◦43′18′′, as shown in Figure 1. The region has a Mediterranean
climate, with hot, dry summers and few rainy winters. The average temperature is 22 ◦C,
while the average difference between summer and winter is 6 ◦C. The mean temperatures
are especially high in the dry season when they vary between 24 and 31 ◦C. According to the
Soil Survey Staff [31], the investigated area’s soil temperature regime is thermic, while its
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soil moisture regime is torric. Sedimentary non-consolidated deposits from the quaternary
era, which are divided into four types of deposits—young deltaic, Fluvio-marine, young
Eolian, and old Eolian—classify the central region of the Nile Delta. The district of Kafr
EL–Zayat, is notable for its textile industry. The surface irrigation system is essential to the
farming system in the studied area. Instead of taking into account the recommendations
made by the relevant authorities, the amount of additional chemical and organic fertilizers
that produce heavy metal contamination in the research region is normally determined by
the Egyptian farmer based on his personal experience [32].
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Figure 1. Experimental area location.

2.2. Analysis of Selected Samples

To determine the level of soil contamination, fifty random soil samples were selected,
as shown in Figure 2. To prepare the collected soil samples for analysis, they were stored
in plastic bags at a temperature of around 4 ◦C after being air-dried and crushed to
pass through a 2 mm sieve. The distribution of particle sizes was determined using the
Bouyoucous hydrometer method [33]. The pH of the soil in a suspension of 1:2.5 soil to
water was measured using a pH meter. Soil electrical conductivity (ECe) was assessed in a
soil paste extract using an EC-meter. According to the Walkley and Black procedure [34], soil
organic matter (SOM %) was determined. A mixture of hydrofluoric acid and concentrated
nitric acid was used to digest soil the samples [35]. The concentrations of Cd, Mn, Pb,
and Zn were measured by inductively coupled plasma mass spectrometry (ICP-MS model
Prodigy Plus).
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2.3. Indices of Contamination
2.3.1. Geoaccumulation Index (I-Geo)

By contrasting the recorded levels of measured heavy metals with the background
values, the I-Geo demonstrates contamination. The calculation for the geoaccumulation
index employed the following equation [36]:

Igeo = log2
Cn

1.5Bn
(1)

where Cn is the heavy metal concentration, as determined by soil sample analysis, and Bn is
the geochemical background concentration, as seen in the average upper crust Muller- [37]
identified seven pollution levels according to the Igeo values, which are presented in
Table S1.

2.3.2. The Contamination Factor (CF)

The contamination factor (CF) of each metal in the study was computed by dividing
the total concentration of each measured heavy metal by the background value. The CF
arranges pollution levels into four categories, as set by Hakanson [38] (See Table S2).

2.3.3. Improved Nemerow’s Pollution Index (In)

The improved Nemerow’s pollution index’s adoption allowed for a thorough assess-
ment of the soil ecosystem’s condition. The following equation was used to determine the
modified formula offered by Guan et al. [39] for each sampling site:

In =

√√√√(
I2
geomax + I2

geoave

)
2

(2)
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where Igeomax is the maximum possible value for Igeo, and Igeoave is the numerical average of
Igeo. There are seven categories of pollution based on the value of In, as outlined in Table S3.

2.4. Statistical Analysis

Using SPSS version 25, the statistical analysis for the studied soil properties and
heavy metals was computed and the variables were normalized using Z-scores [6]. The
Pearson correlation coefficient was utilized to show linear relationships between studied
variables. The samples’ suitability for PCA was assessed using the Kaiser–Meyer–Olkin
(KMO) approach. The data were appropriate for PCA if KMO values were greater than
0.5 [40]. The dataset was divided into PC variables using principal component analysis
(PCA) to eliminate multicollinearity between the original variables. To further confirm the
data fitness for PCA, the Bartlett test was applied, and the results revealed that p < 0.05 [41].
Heavy metal data were clustered using hierarchical cluster analysis (HCA) to analyze their
behavior, sources, and origins. Understanding the relationships between the various heavy
metals was made easier by this analysis [42,43].

2.5. Heavy Metals and Some Soil Properties’ Spatial Variability Maps

The ArcGIS Spatial Analyst 10.4 extension provides spatial data analysis capabilities
that model geographically referenced data using statistical theory and methods. The
interpolation techniques of ArcGIS Spatial Analysis were utilized to obtain the intervening
values from data for four heavy metals. A technique for interpolation called the weighted
inverse distance (IDW) makes use of data that have been measured close to the prediction
point. A stronger weight is given to the points nearest to the prediction site, with the
weight being a function of distance. The values measured closest to the prediction site have
a greater impact on the expected values of the distant ones. IDW is effective, which is a
benefit for mapping the spatial distribution of heavy metals [6,44]. The presence of other
sources, such as agricultural and industrial drainage directly affects the concentration of
elements in the soil, which varies depending on the distance from the source, making it
preferable to use the IDW method in this study because the concentration of elements is
not due to natural sources.

2.6. Remote Sensing Data

Using 13 spectral bands of the MSI (Multispectral Imager) instrument, Sentinel
2 satellite images acquired in 9/2021 from the European Space Agency (ESA) offer high-
resolution multispectral optical imagery with four bands at 10 m, six bands at 20 m, and
three bands at 60 m spatial resolution. The digital image preprocessing (radiometric calibra-
tion and atmospheric correction) was performed using ENVI 5.3 software [45]. Thereafter,
a supervised classification (maximum likelihood) was accomplished to identify the land
use/land cover classes.

3. Results and Discussion
3.1. Relevant Soil Characteristics and Heavy Metal Concentrations

Table 1 and Figure 3 provide descriptive data for the investigated Cd, Pb, Zn, and
Mn total concentrations. Total cadmium concentrations ranged from 0.82 to 21.89 mg kg−1,
with an average of 11.26 ± 7.57 mg kg−1. Increasing concentrations toward the eastern
regions of the soil sample’s spatial distribution map for Cd were observed in Figure 3f. The
extensive use of phosphate fertilizers, herbicides, and sewage sludge is associated with
cadmium soil contamination [23]. Therefore, soil protection procedures are required to
maintain or improve the current situation by preventing any further Cd contamination,
such as controlling Cd in phosphorus fertilizers, as the majority of this Cd enters the
human body through food materials which accumulate Cd from the soil [46]. An average of
54.15 ± 11.97 mg kg−1 of lead (Pb) is present in the whole content. The spatial distribution
maps of heavy metals are crucial for identifying potential sources of enrichment and
locating areas with high levels of pollution [2]. The Pb spatial distribution map showed
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increasing concentrations in the western parts, as seen in Figure 3g. The irrigation canals
and drainages in these areas (close to urban sites) are subject to several types of pollution
that may be brought on by human activity and agricultural management practices in these
areas, such as the application of fertilizer. The main route of exposure to Pb is through
the food chain, although it can also be acquired through the consumption of dust and
soil [47]. Lead (Pb) can harm the brain and neurological systems, even at relatively low
lead levels, especially in children. Consequently, a thorough evaluation of the risk caused
by Pb in topsoil is necessary. The greatest concentrations of Mn and Zn are both spread
over the research area and do not represent any particular patterns, as seen in Figure 3h,i.
The total zinc concentrations had an average value of 61.29 ± 9.50 mg kg−1. Although
humans and plants both require zinc, an excessive amount can be harmful [48]. It might
cause instant harm, which could lead to immune system and digestive system issues.
Additionally, high zinc levels may inhibit copper absorption, resulting in copper deficiency
symptoms [46]. The total Mn concentration was 115.25–446.05 mg kg−1, with a mean of
330.06 ± 22.29 mg kg−1. Except for Mn, all of the studied heavy metal concentrations
were higher than background levels [36]; nonetheless, Cd and Pb are above the permissible
values set by the DEA [49], while Zn and Mn are lower than these levels, as shown
in Tables 1 and 2. The ECe values in the research region range widely, from 1.45 to
32.30 dS m−1, with an average of 7.52 ± 8.32 dS m−1. The northeast of the research region
has the greatest value, in line with the area’s spatial distribution of salinity, as shown in
Figure 3a. A considerable portion of the planet, particularly arid and semi-arid regions,
is affected by the problem of soil salinization [50]. A high saline water table or dissolved
minerals in irrigation water are common sources of salts [51]. High osmotic pressure
reduces agricultural output, which makes it more difficult for crops to absorb enough
water from the soil [52]. The accumulation of salts in agricultural roots results in salinity
dangers by significantly decreasing the amount of water available, which harms crop
productivity [53,54]. The pH was between 7.39 and 8.30, with an average of 7.70 ± 0.20, for
the analyzed soil samples. The interpolation map (Figure 3b) revealed the research area’s
zone pH values, while some of its northern areas have lower pH values. Soil pH affects
soil quality and plant cultivation by affecting the equilibrium of carbonate, the mobility,
and availability of heavy metals, and the relative ratio of nitrogen components [55]. The
range of calcium carbonate (CaCO3%) content is 0.38 to 2.32 ± 2.79%. Figure 3c displays
the spatial interpolation of CaCO3%. The study area’s north and west zones had the
highest concentration of CaCO3%. The presence of shell fragments is responsible for
high values of CaCO3% within the study area [56]. The SOM% varied from 1.30 to 2.4%
(Figure 3d) and this might be used as the only indicator of soil degradation [57], supporting
its significance in determining soil quality. SOM is crucial for preserving appropriate soil
structure, improving the availability of nutrients that enhance soil fertility, and sustaining
the agro-equilibrium of ecosystems [58]. Because of how negatively the dry and semi-
arid climatic conditions affect the SOM content due to the high-temperature rise in the
rate of decomposition of organic material in the soil, the SOM content is relatively low
in the research area. The average clay content within the study area is 33.39 ± 3.64%
(Figure 3e). Particle size is thought to play a significant role in determining how well
sediment can concentrate and hold trace elements [59]. Fine particles are the primary site
for the accumulation of trace elements compared to coarse particles due to their greater
specific surface area [60]. It has been noted that when the clay content increases, the
concentration of all elements in the various soils increases.
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Table 1. The quantitative descriptive statistics for the variables under investigation.

Properties Measuring
Units

Observed
No. Min. Max. Mean SD Skewness Kurtosis

Cd mg kg−1 50 0.82 21.89 11.26 7.57 0.04 −1.67
Pb mg kg−1 50 30.00 85.25 54.15 11.97 0.45 0.20
Zn mg kg−1 50 34.00 81.40 61.29 9.50 −0.15 1.01
Mn mg kg−1 50 115.25 446.05 330.06 85.78 −0.57 −0.79
ECe dS m−1 50 1.45 32.30 7.52 8.32 1.71 1.78

pH (−log H) - 50 7.39 8.30 7.70 0.20 0.68 0.53
CaCO3 % 50 0.38 5.32 2.79 1.21 −0.079 0.66
O. M % 50 1.30 2.40 1.64 0.27 1.04 0.59
Clay % 50 24.00 43.50 33.39 3.46 0.24 2.70

Min. = minimum, Max. = maximum and SD. = standard deviation.

Table 2. Recommended heavy metals contamination.

Recommended Values of Heavy Metals Concentrations Cd Pb Zn Mn
mg kg−1

Wedepohl [36] 7.5 20 240 740
DEA [49] 0.1 20 52 527

3.2. Principal Component Analysis (PCA)

The Pearson correlation coefficient was calculated at p < 0.01 or p < 0.05. Regardless of
correlation significance, soil pH negatively correlated with Cd, Pb, and Zn, while there was
a positive correlation between clay content and all variables. However, Cd and Pb content
in the soil had a negative relationship with soil organic matter (SOM). A greater association
was found between Cd, Pb, and Zn (Figure 4).

The principal component analysis (PCA) groups variables from the original data into
factors or principal components [41,61]. In previous research, PCA was applied to evaluate
soil contamination with several chosen heavy metals [24,62]. The KMO value was 0.59
(Table S4). PCs with eigenvalues greater than one were kept, while PCs with eigenvalues
less than one were disregarded. The first three groups were chosen as a result because
their eigenvalues were greater than 1. These three factors are illustrated in Table 3 and
Figure 5 as they account for the cumulative variation of 62.10% of the variables under study,
with the first component accounting for approximately 1.06%, the second 13.32%, and the
third 62.10%.

Table 3. Principal component analysis-extracted factors.

F1 F2 F3

Total 2.27 28.47 28.47
% of Variance 1.62 20.30 48.78
Cumulative % 1.06 13.32 62.10
Cd (mg kg −1) 0.82 0.13 −0.005
Pb (mg kg −1) 0.82 −0.02 0.02
Zn (mg kg −1) 0.77 0.16 0.20
Mn(mg kg −1) 0.07 0.73 0.30

EC dS m−1 −0.01 0.51 −0.65
pH (1:2.5) −0.13 0.44 0.55

O. M% −0.55 0.45 0.20
Clay% 0.07 0.61 −0.39

For each variable, the values in bold correspond to the factor for which the squared cosine is highest.
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conductivity (EC: dS/m), (b) soil pH (c) calcium carbonate proportion (CaCO3%), (d) clay%, (e) soil
organic matter proportion (SOM%), (f) Cd (mg kg−1), (g) Pb (mg kg−1), (h) Zn (mg kg−1) and (i) Mn
(mg kg−1).

3.3. Based on PCA, Cluster Analysis

The PCA is applied to classify the variables under study into groups, whereas in
utilizing cluster analysis, observations are classified. In comparison to other clusters, the
cluster contains observations that are comparable to one another [63,64]. The cluster analy-
sis was used widely in soil studies, soil capability, and soil quality [6,43,65]. Additionally,
from 1991 to 2018, a clustering analysis was done on data from different types of heavy
metal-contaminated soil in India [5]. The AHC divided the data in this investigation into
two main categories (clusters). The dendrogram in Figure 6 illustrates how the two clusters
differ from one another; each cluster has distinct features. The first cluster, which contains
19 observations, and the second, which has 31 observations, both have distinct ranges,
means, and standard deviations (SD) for all variables, according to the descriptive statistics
presented in Tables 4 and 5. Figure 6 displays the position of each cluster observation. These
two clusters were taken from the PCA-derived factors (F1, F2, and F3). The acquired results
revealed considerable changes in, Pb, Mn, Zn, and EC. On the other hand, the total content
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of Cd, clay, and soil organic matter did not significantly differ between the two clusters.
This might occur as a result of the low levels of organic matter in arid zones [65–67].
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Table 4. The descriptive statistics of the studied variables (quantitative data) for cluster 1.

Properties Measuring
Units

Observed
No. Min. Max. Mean SD Skewness Kurtosis In

Level

Cluster 1

Cd mg kg−1 19 0.89 21.89 11.70 a 8.56 −0.1 −1.865

Heavily
contaminated

Pb mg kg−1 19 30 85.25 56.40 a 16.11 0.23 −0.926
Zn mg kg−1 19 34 81.20 62.17 a 12.75 −0.60 0.157
Mn mg kg−1 19 115.25 279.27 231.70 a 42.098 −1.40 2.053
EC dS m−1 19 1.45 5.75 2.91 a 1.48 0.74 −0.911

pH (−log H) - 19 7.4 8.19 7.64 a 0.22 1.08 0.561
O. M % 19 1.3 2.20 1.52 a 0.22 2.09 4.27
Clay % 19 27.9 37 33.16 a 1.86 −1.09 3.542

In - 19 1.82 5.23 3.9 a 1.34 −0.78 0.52

A significant difference between two variables’ means is shown by their differing letter.

Table 5. The descriptive statistics of the studied variables (quantitative data) for cluster 2.

Properties Measuring
Units

Observed
No. Min. Max. Mean SD Skewness Kurtosis In

Level

Cluster 2
Cd mg kg−1 31 0.82 20.95 10.98 a 7.03 0.126 −1.67

Heavily to
extremely

contaminated

Pb mg kg−1 31 35.5 69.85 52.76 b 8.54 −0.132 −0.29
Zn mg kg−1 31 49.25 81.4 60.74 b 7.01 0.905 1.52
Mn mg kg−1 31 326.75 446.05 390.34 b 32.76 −0.232 −0.97

EC dS/m dS m−1 31 1.65 32.3 10.35 b 9.49 −0.028 9.14
pH (−log H) - 31 7.39 8.3 7.73 a 0.19 0.636 1.65

O. M % 31 1.3 2.4 1.71 a 0.27 0.776 0.50
Clay % 31 24 43.5 33.53 a 4.17 0.204 1.39

In - 31 1.75 5.20 4.15 a 1.04 −1.19 0.42

A significant difference between two variables’ means is shown by their differing letter.

3.4. The Study Area’s Land Use

Figure 7 depicts the land use of the research area which was divided into four primary
classes: crops (maize and rice), trees (Citrus, apple, and banana), fallow lands, and urban
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areas (industrial zones and residential constructions). These classes are the main classes
in the Gharbia governorate, Egypt [68]. The dominant classes are agriculture field crops,
which account for about 13,890.35 ha of the total area, and urban, which account for about
2754.77 ha of the entire area under study.
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3.5. Geoaccumulation Index (I-Geo) and Contamination Factor (CF)

The extent of heavy metal contamination in soil may be determined with the help of
PCA and I-Geo analysis combinations [30]. Regarding Mn and Zn, both clusters showed
that I-Geo falls in class 0, meaning that no contamination from these metals was found
in the samples that were being examined. According to the I-geo of Pb, cluster 1 is un-
contaminated, uncontaminated/moderately contaminated, and moderately contaminated,
with respective percentages of 5%, 58%, and 37% (Figure 8a). Additionally, cluster 2 had
a relative proportion of 77% for uncontaminated/moderately contaminated and 23% for
moderately contaminated (Figure 8b). Cluster 1 observed Cd I-Geo values of 26% moder-
ately/strongly contaminated and 74% extremely contaminated, compared to 13 and 87%
in cluster 2. The CF is widely used to track the level of elemental contamination, estimate
the extent of anthropogenic influence, and differentiate between metal origins [69]. The
results revealed that the CF of Mn in clusters 1 and 2 is 100% low contamination, while
cluster 1 showed two different degrees of Zn contamination, with approximate percentages
of 16% for low contamination and 84% for moderate contamination (Figure 8c,d). Cluster
2 recorded low Zn (CF) levels of 13% and moderate Zn (CF) values of 84%. According to
Hakanson [38], the findings showed that the Pb contamination factor of cluster 1 indicated
moderate contamination (63%) and considerable contamination (37%), while cluster 2 was
characterized by 77% moderate contamination and 23% of soil samples had considerable
contamination. The results revealed that all soil samples are highly contaminated by Cd in
both clusters 1 and 2. These findings show that anthropogenic sources including industrial
and agricultural activities have enriched the soil samples in the study area with potentially
harmful metals [70].
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3.6. Overview of In

The improved Nemerow index (In), which describes integrated contamination levels,
was derived as the total of the four heavy metals to assess the soil heavy metal contamina-
tion in the research area. The In results for all sampling points indicate that the study area’s
In value typically ranges from class 2 (moderately polluted) to class 6 (extremely polluted).
The Ins are ordered in decreasing order as follows: heavily to extremely polluted, extremely
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polluted, heavily polluted, and moderately polluted with areas of 8767.02 (44.47%), 7187.52
(36.45%), 2278.53 (11.56%), and 1483.50 (7.52%) ha, respectively. The majority of the research
area where the average concentration of heavy metals was 17.64 ± 2.44, 56.45 ± 8.88, 64.24
± 8.12, and 343.78 ± 92.75 mg kg−1, was considered to be heavily to extremely polluted by
Cd, Pb, Zn, and Mn, respectively, as shown in Table 6 and Figure 9. The extremely polluted
class represents the northeast parts of the study area and small areas in the southwest of
the study area, where local factories are situated. The distribution of local factors, mineral
fertilizer in various amounts, and others brought on by human activities in the management
of agriculture maybe the cause of the variation in the contamination indices in the two
clusters [71].
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Table 6. Average levels of heavy metal pollution for each study area contamination level.

Class Elements
mg kg−1 Statistical Parameters

Min. Max. Mean SD.

Class 2

Cd 0.82 1.07 0.96 0.08
Pb 30.00 54.00 44.20 8.22
Zn 34.00 61.00 51.00 9.22
Mn 115.25 396.75 277.51 106.12

Class 4

Cd 6.25 7.00 6.62 0.26
Pb 35.50 64.25 51.14 8.69
Zn 49.75 73.00 60.57 5.38
Mn 226.75 402.25 349.44 60.93

Class 5

Cd 10.00 19.00 17.64 2.44
Pb 44.75 75.25 56.45 8.88
Zn 49.25 81.40 64.24 8.12
Mn 210.40 438.75 343.78 92.75
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Table 6. Cont.

Class Elements
mg kg−1 Statistical Parameters

Min. Max. Mean SD.

Class 6

Cd 18.85 21.89 20.31 1.05
Pb 42.25 85.25 64.68 14.11
Zn 53.75 81.20 67.65 10.09
Mn 215.25 446.05 326.35 88.70

Class 2 = unpolluted to moderately polluted, Class 4 = heavily polluted, Class 5 = heavily to extremely polluted,
and Class 6 = extremely polluted.

4. Conclusions

The assessment of heavy metal contamination in the soil of the middle Nile Delta,
which represents one of the most serious challenges to food security and sustainable
development, is highlighted in the current study. The results revealed that GIS is a helpful
tool for storing, retrieving, and manipulating a sizable amount of data required to map
various heavy metal concentrations and soil properties. Additionally, the combination
of PCA and HCA produced interesting classification findings, dividing the research area
into two zones with distinctive heavy metal concentrations and patterns. The findings
showed that all soil samples from clusters 1 and 2 have high levels of Cd contamination.
According to the In data from each sampling location, the research region frequently falls
into classes 2 (moderately polluted) through 6 (extremely contaminated). Most of the
study region was declared to be heavily to extremely polluted by Cd, Pb, Zn, and Mn,
with average heavy metal concentrations of 17.64 ± 2.44, 56.45 ± 8.88, 64.24 ± 8.12 and
343.78 ± 92.75, mg kg−1, respectively. It is a warning alarm for the current research
ecosystems and the contamination levels may contribute to possible health problems for
nearby populations. The large-scale application of mineral fertilizers and pesticides, as
well as industrial activities, are responsible for the deterioration of the soil quality in this
area. The study suggests the establishment of farm management laws to prevent human
bad habits that worsen environmental degradation. Future research will also concentrate
on methods for reducing the consequences of soil pollution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12123220/s1, Table S1: Geoaccumulation index-based
standard for contamination levels (Igeo); Table S2: Pollution standards by contamination factor
(CF); Table S3: Nemerow pollution index standard for pollution levels (In); Table S4: Sphericity test
conducted by Bartlett and Kaiser–Meyer–Olkin (KMO).
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